DIFFERENTIABILITY

A function f(x) is said to be derivable at $x = c \in D(f)$ if $\underset{h \to 0}{\text{Lt}} \frac{f(c+h) - f(c)}{h}$ (called derivative f'(c) at c) exist (finitely).

(i) Left derivative at x = c

$$Lf'(c) = Lt_{h\to 0^{-}} \frac{f(c-h) - f(c)}{-h}$$

(ii) Right derivative at x = c

$$Rf'(c) = Lt_{h\to 0^+} \frac{f(c+h) - f(c)}{h}$$

Remark: From the above definitions, it follows that the derivative of a function *f* at *c* exists iff the left and right derivatives both exist separately at that point and are equal.

$$Lf'(c) = Rf'(c) = f'(c)$$

In other words, Derivative: Let y = f(x) be a function of x and δx be an increment in the value of x and δy be the corresponding increment in the value of the function y, then

 $\underset{\delta x \to 0}{\text{Lt}} \frac{\delta y}{\delta y}$ (if it exists) is called the derivative of y with respect to x and is denoted by $\frac{dy}{dx}$ i.e $\frac{dy}{dx} = \underset{\delta \to 0}{\text{Lt}} \frac{\delta y}{\delta x}.$

THEOREM: If a function is finitely derivable at a point, then it is also continuous at that point; but the converse is not true.

Proof: - For let f(x) be derivable at x = a, then f'(a) exists, hence

 $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists and let it be equal to f ' (a).

Then $\lim_{h\to 0} [f(a + h) - f(a)] = \lim_{h\to 0} f'(a)$.

:. $\lim_{h\to 0} f(a + h) = f(a)$ or equivalently $\lim_{z\to a} f(x) = f(a)$.

Hence the function is continuous at x = a.

Conversely, let f(x) = |x|, is continuous at x = 0 but it is not derivable at x = 0.

EXAMPLES

- **11.** Let $f(x) = x^2 \sin \frac{1}{x}$ for $x \neq 0$, f(0) = 0. then
 - (A) f (x) is continuous and derivable at x = 0
 - (B) f (x) is continuous and not differentiable at x = 0.
 - (C) f (x) is neither continuous nor differentiable at x = 0
 - (D) none of these

Sol. Continuity at x = 0: L Lt f(x) = Lt = h = 0 $f(0 - h) = Lt = (0 - h)^2 \sin \frac{1}{0 - h} = Lt = -h^2 \sin \frac{1}{h} = 0 x$ [finite quantity] = 0 R. $\underset{x \to 0}{\text{Lt}} f(x) = \underset{h \to 0}{\text{Lt}} f(0 + h) = \underset{h \to 0}{\text{Lt}} (0 + h)^2 \sin \frac{1}{0 + h} = \underset{h \to 0}{\text{Lt}} h^2 \sin \frac{1}{h} = 0$ Also f(0) = 0. $\therefore L. \underset{x \to 0}{\text{Lt}} f(x) = R. \underset{x \to 0}{\text{Lt}} f(x) = f(0) .$ \therefore f(x) is continuous at x = 0. Derivability at x = 0: L. $f'(0) = Lt_{h\to 0} \frac{f(0-h) - f(0)}{-h} = Lt_{h\to 0} \frac{(-h)^2 \sin \frac{1}{(-h)} - 0}{-h} = Lt_{h\to 0} h \sin \frac{1}{h} = 0 x \text{ finite quantity} = 0$ R. f'(0) = $\underset{h\to 0}{\text{Lt}} \frac{f(0+h) - f(0)}{h} = \underset{h\to 0}{\text{Lt}} \frac{h^2 \sin \frac{1}{h} - 0}{h} = \underset{h\to 0}{\text{Lt}} h \sin \frac{1}{h} = 0$ ∴ L. f'(0) = R. f'(0). \therefore f (x) is derivable at x = 0. The correct answer is (A). The function f (x) = |x - 1| + |x - 2| is not derivable at 12. (A) x = 0 (B) x = 1 (C) x = 3 (D) x = 1, x = 2(C) x = 3 (D) Clearly the function is derivable for $0 \le x \le 1$, $1 \le x \le 2$, $2 \le x \le 3$. :. Let us consider the points x = 1 and x = 2At x = 1. L. $f(1) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h} = \lim_{h \to 0} \frac{3^2 - 2(1-h) - f(1)}{-h} = \lim_{h \to 0} (-2) = -2$ R. f'(1) = $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{1-1}{h} = 0.$ \therefore Lf'(1) \neq R.f'(1). \therefore f(x) is not derivable at x = 1. At x = 2. L. f'(2) = Lt $\frac{f(2-h) - f(2)}{-h}$ = Lt $\frac{1-1}{h} = 0$ R. f'(2) = $\frac{1-1}{h} \frac{f(2+h) - f(2)}{h} = Lt_{h \to 0} \frac{2(2+h) - 3 - 1}{h} = Lt_{h \to 0}$ (2) = 2 \therefore L, f'(2) \neq R, f'(2). \therefore f (x) is not derivable at a x = 2. The correct answer is (D).

Top Careers & You[®]

	DIFFERENTIATION: - STANDARD RESOLTS				
Sr no	Function	Differentiation(dy/dx)	Remarks		
1	$\mathbf{y} = \mathbf{x}^{n}$	$\frac{dy}{dx} = nx^{n-1}$	$y = u^n, \frac{dy}{dx} = nu^{n-1}\frac{du}{dx}$		
2	y = e ^x	$\frac{dy}{dx} = e^{x}$	$y = e^{u}, \ \frac{dy}{dx} = e^{u} \ \frac{du}{dx}$		
3	y = log x	$\frac{dy}{dx} = 1/x$	$y = \log u$, $\frac{dy}{dx} = 1/u \frac{du}{dx}$		
4	y = a ^x	$\frac{dy}{dx} = \mathbf{a}^x \log \mathbf{a}$	$y = a^{u}, \frac{dy}{dx} = a^{u} \log a. \frac{du}{dx}$		
5	y = sin x	$\frac{dy}{dx} = \cos x$	$y = \sin u$, $\frac{dy}{dx} = \cos u$. $\frac{du}{dx}$		
6	y = cos x	$\frac{dy}{dx} = -\sin x$	$y = \cos u$, $\frac{dy}{dx} = -\sin u$. $\frac{du}{dx}$		
7	y = tan x	$\frac{dy}{dx} = \sec^2 x$	$y = \tan u, \ \frac{dy}{dx} = \sec^2 u. \ \frac{du}{dx}$		
8	y = cot x	$\frac{dy}{dx} = -cosec^2 x$	$y = \cot u, \ \frac{dy}{dx} = -\csc^2 u. \ \frac{du}{dx}$		
9	y = sec x	$\frac{dy}{dx} = \sec x \tan x$	y = sec u \rightarrow Apply $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$		
10	y = cosec x	$\frac{dy}{dx} = -\cos c x \cot x$	Do as above		
11	y = sin ⁻¹ x	$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$	Do as above		
12	y = cos ⁻¹ x	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{\sqrt{1-x^2}}$	Do as above		
13	y = tan ⁻¹ x	$\frac{dy}{dx} = \frac{1}{1+x^2}$	Do as above		
14	$y = \cot^{-1} x$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{1+x^2}$	Do as above		
15	y = sec ⁻¹ x	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\left x\right \sqrt{x^2 - 1}}, \left x\right > 0$	Do as above		
16	y = cosec ⁻¹ x	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{ x \sqrt{x^2-1}}, x > 0$	Do as above		

DIFFERENTIATION: - STANDARD RESULTS

SOME FUNDAMENTAL THEOREMS

Let u, v, w..... be functions of x whose derivatives exist.

1. Differential coefficient of constant is zero, i.e., $\frac{d}{dx}(k) = 0$ 2. $\frac{d}{dx}(ku) = k \frac{du}{dx}$ 3. $\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$ 4. $\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$ 5. $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \text{ or } \frac{DN'-ND'}{D^2}$ 6. If y = f(t) and $t = \phi(x)$, then $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$ 7. If u = f(y), then $\frac{du}{dx} = \frac{du}{dy} \frac{dy}{dx} = f'(y) \frac{du}{dx}$ 8. $\frac{dy}{dx} \cdot \frac{dx}{dy} = 1$ or $\frac{dy}{dx} = \frac{1}{dx/dy}$

DIFFERENTIATION OF ONE FUNCTION WITH RESPECT TO ANOTHER FUNCTION

Let
$$y = f(x)$$
, $z = \phi(x)$ and

Then derivative of f (x) w.r.t, $\phi(x)$, i.e., y with respect to z is:

$$\frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\mathrm{d}y}{\mathrm{d}x} \div \frac{\mathrm{d}x}{\mathrm{d}z}$$

LOGARITHMIC DIFFERENTIATION

If
$$y = [f_1(x)]^{f_2(x)}$$
 or $y = f_1(x) f_2(x) f_3(x) \dots$ or $y = \frac{f_1(x) f_2(x) \dots}{\phi_1(x) \phi_2(x) \dots}$

Then it will be convenient to take log of both sides before performing differentiation

IMPLICIT FUNCTION

f(x, y) = c. Differentiate each term w.r.t. x and note that $\frac{d}{dx}(\phi(y)) = \frac{d}{dy}(\phi(y)) \frac{dy}{dx}$

For example, $x^3 + y^3 - 3axy = 0$. Differentiating w.r.t. x, we get

$$3x^2 + 3y^2 \frac{dy}{dx} - 3a\left(1.y + x\frac{dy}{dx}\right) = 0$$

$$\Rightarrow (x^2 - ay) + (y^2 - ax) \frac{dy}{dx} = 0.$$
$$\therefore \frac{dy}{dx} = -\frac{x^2 - ay}{y^2 - ay}$$

BY THE HELP OF PARTIAL DIFFERENTIATION

If f(x, y) = c, then we can find $\frac{dy}{dx}$ by the help of partial differentiation as under

$$\frac{dy}{dx} = -\frac{f_x}{f_y}$$
 where

 f_x is differential coefficient of f(x, y) w.r.t. x treating y as constant.

Similarly f_y is differentiation of f(x, y) w.r.t. y treating x as constant.

For example, if $f(x, y) = x^3 + y^3 - 3axy = 0$, then $f_x = 3x^2 - 3ay$, $f_y = 3y^2 - 3ax$.

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\mathrm{f}_x}{\mathrm{f}_y} = -\frac{\mathrm{x}^2 - \mathrm{a}y}{\mathrm{y}^2 - \mathrm{a}x}$$

TRIGONOMETRY FORMULAE

Sometimes by a trigonometric transformation the derivatives of various functions can be calculated in much simpler way than otherwise. The following trigonometric expansions and formulae are to be remembered.

1 i
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}$$

ii
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$$

iii
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}$$

iv $\sin^{-1} x \pm \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} \pm y \sqrt{1 - x^2} \right]$

v
$$\cos^{-1} x \pm \cos^{-1} y = \cos^{-1} \left[xy \mp \sqrt{1 - y^2} \sqrt{1 - y^2} \right]$$

2.
$$\sin^{-1} x + \cos^{-1} x = \tan^{-1} x + \cot^{-1} x = \sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$

3.
$$\sin^{-1} x = \csc^{-1} (1/x)$$
; $\tan^{-1} x = \cot^{-1} (1/x)$

4.
$$\sin^{-1}\cos x = \sin^{-1}\sin\left(\frac{1}{2}\pi - x\right) = \frac{1}{2}\pi - x$$

5.
$$\tan^{-1}(\tan \theta) = \theta$$
, $\sin^{-1}(\sin \theta) = \theta$, $\cos^{-1}(\cos \theta) = \theta$

$$\begin{array}{ll}
6 & \frac{1-\cos x}{1+\cos x} = \frac{2\sin^2(x/2)}{2\cos^2(x/2)} = \tan^2 \frac{x}{2}; & \frac{1+\cos x}{1-\cos x} = \cot^2 \frac{x}{2}; \\
& \frac{1-\cos x}{\sin x} = \frac{2\sin^2(x/2)}{2\sin(x/2)\cos(x/2)} = \tan \frac{x}{2}; & \frac{1+\cos x}{\sin x} = \cot \frac{x}{2} \\
7. & \sqrt{1\pm\sin x} = \cos(x/2) \pm \sin(x/2), \\
8. & \tan A \pm \tan B = \frac{\sin A \cos B \pm \cos A \sin B}{\cos A \cos B} = \frac{-\sin(A \pm B)}{\cos A \cos B} \\
9. & \tan\left(\frac{1}{4}\pi + \theta\right) = \frac{1+\tan \theta}{1-\tan \theta}; & \tan\left(\frac{1}{4}\pi - \theta\right) = \frac{1-\tan \theta}{1+\tan \theta} \\
10. & \cos x = 2\cos^2(x/2) - 1 = 1 - 2\sin^2(x/2) = \cos^2(x/2) - \sin^2(x/2) \\
11 & \sin x = \frac{2\tan(x/2)}{1+\tan^2(x/2)} \\
12. & \cos x = \frac{1-\tan^2(x/2)}{1+\tan^2(x/2)} \\
13. & \tan x = \frac{2\tan(x/2)}{1-\tan^2(x/2)} \\
14. & \sin 3x = 3\sin x - 4\sin^3 x \\
\end{array}$$

SUBSTITUTION FOR DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

)n	on
a ² + x ²	$x = a \tan \theta$ or $a \cot \theta$
$a^2 - x^2$	$x = a \sin \theta$ or $a \cos \theta$
$x^2 - a^2$	x = a sec θ or a cosec θ
$\sqrt{\frac{a-x}{a+x}}$ or $\sqrt{\frac{a+x}{a-x}}$	x = a cos 20
$\sqrt{\frac{\mathbf{x}-\alpha}{\beta-\mathbf{x}}}$ or $\sqrt{(\mathbf{x}-\alpha)(\mathbf{x}-\beta)}$	$\alpha \cos^2 \theta + \beta \sin^2 \theta$

SUCCESSIVE DIFFERENTIATION

Let y = f(x). Then if f(x) is differentiable then, $y_1 = \frac{dy}{dx} = f'(x)$ is also differentiable function of x. The derivate of $\frac{dy}{dx}$ is denoted by $\frac{d^2y}{dx^2}$ or y_2 or f''(x) is also a differentiable function x.

Thus, we can differentiate f (x) any number (positive integer) of times.

If n is a positive integer then nth derivation of y or f is denoted by y_n or $\frac{d^n y}{dx^n}$ or y $^{(n)}$ or Dⁿ y.

Thus $y_n = y^{(n)} = \frac{d^n y}{dx^n} = f^n(x) = D^n y.$

Leibnitz's Theorem: If u and v are any two functions of x such that their desired differential coefficients exist, then the nth differential coefficient of uv is given by

$$D^{n}(uv) = (D^{n}u).v + {}^{n}C_{1}(D^{n-1}u). (Dv) + {}^{n}C_{2}(D^{n-2}n). (D^{2}v) + \dots + u(D^{n}v)$$

Methods of Successive Differentiation

- By the use of **standard results** given above.
- By **decomposition into a sum:** Sometimes standard results given earlier can be used by decomposing the given functions as the sum or difference of suitable functions with the help of algebraic or trigonometric formulae.
- By the use of **partial fractions:** If numerator and denominator of a function are both rational, integral algebraic functions, then results given can be used by decomposing the given function into partial fractions.
- By Leibnitz's Theorem: To find the nth derivate of the product of two functions, Leibnitz's theorem is useful.

FUNCTION y = f(x)	y _n
y = a ^x	a ^x (log a) ⁿ
y = (ax + b) ^m , m ∈ I,	Case 1 - m > n $\frac{m!}{(m-n)!} (ax + b)^{m-n} a^n$
$\mathbf{y} = (\mathbf{a}\mathbf{x} + \mathbf{b})$, $\mathbf{m} \in \mathbf{I}$,	Case 2 - $\mathbf{m} = \mathbf{n}$ n! a ⁿ
	Case 3 - m < n 0
$y = \frac{1}{ax + b}$	$-y_{n} = (-1)^n \underline{\mid n} (ax + b)^{-n-1} a^n$
$y = \log(ax + b)$	$y'_{n} = (-1)^{n-1} \underline{ n-1 } a^{n} (ax + b)^{-n}$
y = sin (ax + b)	$\int y_n = a^n \sin\left(ax + b + n\frac{\pi}{2}\right)$
y = cos (ax + b)	$y_n = a^n \cos\left(ax + b + n\frac{\pi}{2}\right)$

SOME IMPORTANT Nth DERIVATIVE RESULTS

Proofs:

1. nth order derivative of a^x

Let $y = a^x$. Then $y_1 = a^x \log a$, $y_2 = a^x (\log a)^2$, $y_3 = a^x (\log a)^3$ So, in general $y_n = a^x (\log a)^n$. Thus $D^n (a^x) = a^x (\log a)^n$

nth order derivative of sin (ax + b) 2.

Let y = sin (ax + b). Then y₁ = a cos (ax + b) or y₁ = a sin $\left(\frac{\pi}{2} + ax + b\right)$

 $\Rightarrow y_2 = a^2 \cos\left(\frac{\pi}{2} + ax + b\right) = a^2 \sin\left(2\frac{\pi}{2} + ax + b\right).$ Thus, Dⁿ {sin (ax + b))} = aⁿ sin $\left(\frac{n\pi}{2} + ax + b\right)$.

In particular, when a = 1, b = 0, Dⁿ (sin x) = sin $\left(\frac{n\pi}{2} + x\right)$

nth order derivative of $(ax + b)^m$ 3.

$$y_2 = m (m - 1) (ax + b)^{m-2} a^2$$
; $y_3 = m (m - 1) (m - 2) (ax + b)^{m-3} a^3$
Thus, $D^n \{ax + b\}^m = m (m - 1) (m - 2) ... (m - (n - 1)) (ax + b)^{m-n} a^n$

This is the general formula for the nth order derivative of $(ax + b)^m$ for all values of m.

Now three cases arise -

When $m \in N$ and m > n. In this case Case I:

$$D^{n} \{(ax + b)^{m}\} = m (m - 1) (m - 2) \dots m - (n - 1)) (ax + b)^{m - n} a^{n} = \frac{m!}{(m - n)!} (ax + b)^{m - n} a^{n}$$

When $m \in N$ and m = n. In this case $D^n \{(ax + b)^n\} = n! a^n$. Case II:

When $m \in N$ and m < n. In this case $\overline{D}_{1}^{n} \{(ax + b)^{m}\} = 0$. Case III: Putting m = -1, we get $D^n \{(ax + b)^{-1} = (-1) (-2) (-3) \dots (-1 - (n - 1) (ax + b)^{-1 - n} a^n \}$

$$= \frac{(-1)^{n} 1.2.3..n}{(ax+b)^{n+1}} a^{n} = \frac{(-1)^{n} n!}{(ax+b)^{n+1}} a^{n}.$$

Thus,
$$D^n \left(\frac{1}{ax+b}\right) = \frac{(-1)^n n!}{(ax+b)^{n+1}} a^n$$

In Particular, putting $a = 1, b = 0$, we get $D^n \left(\frac{1}{x}\right) = \frac{(-1)^n n!}{x^{n+1}}$

EXAMPLES

If $y = \tan x$, prove that $y_2 = 2yy_1$ 1.

Sol. We have y = tan x

$$\therefore \frac{dy}{dx} = \sec^2 x \text{ or } y_1 = \sec^2 x$$

$$\Rightarrow \frac{d}{dx} (y_1) = \frac{d}{dx} (\sec^2 x)$$

$$\Rightarrow y_2 = 2 \sec x \frac{d}{dx} (\sec x) = 2 \sec x. \sec x \tan x = 2 \tan x. \sec^2 x$$

$$\Rightarrow y_2 = 2yy_1 \quad [\because y = \tan x \text{ and } y_1 = \sec^2 x]$$

If $y = x^3 \sin x$, then $y_{20} = ?$ 2. (a) $x^3 \sin x - 60 x^2 \cos x - 1140 x \sin x + 6840 \cos x$ (b) $x^3 \sin x - 60 x^2 \cos x + 1140 x \sin x - 6840 \cos x$ (c) $x^3 \sin x + 60 x^2 \cos x + 1140 x \sin x + 6840 \cos x$ (d) none of these **Sol.** Using Leibnitz Theorem, considering sin x as 1^{st} function, we have $y_{20} = \sin (x + 20\pi/2).x^3 + 20.\sin (x + 19\pi/2).3x^2$ + $\frac{1}{2}$. 20.19. sin (x + $18\pi/2$). 6x + (1/6). 20.19.19.sin (x + $17\pi/2$).6 $= x^{3} \sin x - 60 x^{2} \cos x - 1140 x \sin x + 6840 \cos x$. Answer: (a) If y is a polynomial of degree n with its leading coefficient 2, then $D^{n-1}(y) = ?$ 3. (a) 2 (n!) (b) 2 (n!) x (c) 2 (n – 1) ! x (d) none of these **Sol.** Let $y = 2x^n + a_1 x^{n-1} + \dots + a_n$. Then, $y_{n-1} = 2$. n (n - 1) ... 2.x + a_1 (n - 1) ! = 2. n ! x + a₁ (n – 1) ! Since, we do not know the coeff. Of x^{n-1} . Answer: (d)